

Assessing the impacts of international response measures in Ghana

Dorothee Flaig and Scott McDonald

dorothee.flaig@uni-hohenheim.de International Agricultural Trade and Food Security Hohenheim University, Germany ERCST EPA Webinar, 27.09.2021

Outline

- Planned simulations
- Method

Database

Computable General Equilibrium (CGE) model Strength and qualifications of the approach

Planned simulations

1. IMO carbon tax (maritime transport) – uniform carbon tax

Worldwide uniform carbon tax on maritime transport

Two alternatives: \$50 and \$100 per ton levy on greenhouse gas emissions

2. ICAO/CORSIA carbon tax (air transport)

Worldwide uniform carbon tax on air transport Similar to IMO: Two alternatives: \$50 and \$100 per ton levy on greenhouse gas emissions Including effects on tourism

3. EU CBAM tax:

On imports, Worldwide, no exemption LDCs

Sectors: Cement, Iron & Steel, Aluminum, Fertilizers

Emissions: scope 1; Benchmark: national average by sector

A Social Accounting Matrix (SAM) for Ghana (Billion US\$)

	COMM.	ACT.	VA.	HH.	TMTAX	TETAX	TSDTAX	GOVTN	KAPITAL	MARGS	WORLD	TOTALS
COMMDTY (37)		32.9		25.9				7	10.1		12.2	88.1
ACTIVITY (37)	67.2											67.2
VALUAD (5)		33.1										33.1
HHOLDS			28.5					2.3				30.8
TMTAX (12)	1.4											1.4
TETAX (12)	0											0
TSDTAX		0		0								0.1
GOVTN	3.2	1.1	-0.2	1.8	1.4	0	0.1					7.5
KAPITAL			4.8	3				-1.8			4	10.1
MARGS (3*12)	0.5											0.5
WORLD (12)	15.8									0.5		16.2
TOTALS	88.1	67.2	33.1	30.8	1.4	0	0.1	7.5	10.1	0.5	16.2	

Database used in project

• Based on GTAP database v10 (Aguiar et al. 2019):

year 2014, identifies141 regions, 65 sectors

• Aggregated for the purpose of this study:

Ghana and 12 aggregate regions

37 sectors

5 factors of production: unskilled labour, skilled labour, capital, land, natural resources

• Energy data (satellite account to SAM):

quantities of energy commodities used (MTOE) and CO_2 emissions associated with each energy commodity and using agent

sourced from GTAP (compiled by the International Energy Agency)

Aguiar, A., Chepeliev, M., Corong, E., McDougall, R., & van der Mensbrugghe, D. (2019). The GTAP Data Base: Version 10. Journal of Global Economic Analysis, 4(1), 1-27.

Regions	Sectors				
Ghana	Oil seeds	Textiles	Electricity		
Africa LDCs	Crop agriculture	Petroleum, coal products	Gas manufacture and distr.		
Rest of Africa	Fishing	Chemical products	Water supply and distr.		
EU	Livestock agriculture	Basic pharmaceutical products	Construction		
Rest of Europe	Coal	Rubber and plastic products	Land and pipeline transport		
North America	Extraction of crude oil	Mineral products	Water transport		
Central and South America, Caribbean	Extraction of natural gas	Ferrous metals	Air transport		
Oceania Other mining extrac		Aluminium and other metals	Trade services		
East Asia	Vegetable oil and fats	Metal products Tourism	Accommodation, Food and service activities		
LDCs Asia and Oceania	Animal products	Electronics and equipment	Financial, communication and business services		
Rest of Asia	Other food products	Machinery and equipment	Education and health services		
Eastern Europe and Former Soviet		Motor and transport vehicles and parts	Recreational and other services		
Western Asia		Other manufacturing	Public admin. and defence		

Tourism data

- The model returns the increase in prices for air transport from a CORSIA carbon tax.
- To include tourism to add additional sets of information are needed:
 - 1. The responsiveness of tourism arrivals to changes in air transport prices (price elasticity of demand for air travel; based on Scheelhase and Grimme, 2007)

Business travellers: between -0.5 and -0.9

Leisure travellers: between -1.1 and -1.5

Receipt (US\$M) Year Arrivals 2016 932,579 1651.67 2017 969,156 1804.56 2018 956,375 2,589.85 2019 3,312.93 1,130,307 Source: Ghana Immigration Service and Ghana Tourism Authority and 2019 Tourism Report

2. Data on tourism sector in Ghana: (58% business, 42% leisure)

ANNARES model features

 Global Computable General Equilibrium (CGE) model, deriving from GLOBE developed by Scott McDonald and Karen Thierfelder (<u>www.cgemod.org.uk</u>)

based on economic theory

simultaneous determination of prices and quantities in multiple inter-connected markets.

- series of single country CGE models, linked through their trading relationships
- Static version
- Nested production structure (mix of imperfect substitution and fixed shares, flexible nesting structure)
- Imports and domestic products are imperfect substitutes (also exports and domestic supply; by partner)
- Various taxes, including taxes on energy inputs and carbon emissions

Applications

- Global: effects of reducing global carbon emissions by 20%, various alternative policies
- The impact of rm on low-income countries differs by policy instrument, even when low-income countries are exempt from the policies imposed:
 - The most efficient instrument is a tax on carbon with the smallest impact on world prices and the exchange rates of low-income regions.
 - Country differences arising from differing trade structures: E.g., mitigation strategies in the rest of the world decreases the import price of electricity in West Africa but increases the price of electricity in East Africa

Framework Convention on Climate Change

Assessing impacts of the implementation of response measures

The case study of Senegal and Kenya: A Computable General Equilibrium Analysis

Ghana exports by partner (Mio. US\$)

CO2 emissions (kg per GDP)

CO2 emissions (metric tons per capita)	
Ghana	0.5
Africa LDC	0.2
Rest of Africa	1.8
EU	6.5
Rest of Europe	6.9
North America	12.8
Central, South America	2.5
Oceania	14.5
East Asia	6.2
Asia LDC	0.4
Rest of Asia	1.6
Eastern Europe	7.6
Western Asia	6.3

Advantages of CGE

- Theoretical consistent
- Highlight the importance of linkages between sectors
- Incorporate unique features of an economic system.
- CGE therefore suited to analyse
 - effects of policies, i.e., policies that affect multiple sectors or regions and/or result in changes of behaviour
 - "what if"-type of scenarios (ex-ante)
 - used widely in international trade, public finance, regional economics, and environmental economics.

Qualifications

- The data requirements of CGE models are substantial (Database and parameters)
- The global SAM database will deviate from National Account data published by statistical offices. Reasons are, e.g.:

•SAM needs to be complete and consistent – transactions must be reconciled

•E.g., Imports of region A from B need to be equal to exports of region B to A

- Limited sector detail: By covering all sectors in an economy, a CGE model may miss key features of critical sectors.
- Complexity:

human capital investment required to build, use and analyse these models the 'blackbox' critique (ANNARES is well documented)

Thank you!

