

Chair's reflection notes:

1. Renewable energy in integrated grids & Art 6

2. **Registries**

July 15th

Andrei Marcu Dana Agrotti

Roundtable on Climate Change and Sustainable Transition

ERCST

Roundtable on Climate Change and Sustainable Transition

RE on Integrated Grids & Art 6

• This is a common situation in Asia, Africa, Latin America, NA, Europe – and

will increase

	Capacity	Share of renewables	Grid Emission Factor	Mitigation outcome	
US - Canada	10 GW	63.8%	-	-	
Nordic Grid	68 GW	8.08% (5.49 GW)	-	-	
ELTAM Project	4.5 GW	0%	-	-	
Bhutan - India	1.460 GW	99.44% (1.452GW)	1.004 tCO ₂ /MWh	-	
West Africa Power Pool	15.49 GW	68.9% (10.67GW)	0.562 _a tCO2/MWh, 0.561 _b tCO2/MWh	-	
Southern African Power Pool	61.86 GW	29% (17.96GW)	0.9481 _c tCO2/MWh, 0.9871 _d tCO2/MWh	-	
Mekong Basin: Nam Lik 1-2	100 MW	100%	0.58604 tCO ₂ /MWh	1,452,586 tCO ₂ e	
SIEPAC project	300 MW	46%	-	-	

RE on Integrated Grids & Art 6

• They were recognized under the CDM

Title	Host country	Host country 2	Province/ state	Status	Туре	Sub-type	Methodology	1st period ktCO2e/yr
Dagachhu	Bhutan	India	Dagana	Registered	Hydro	Run of river	ACM0002	499
Upper Marsayangdi- 2	Nepal	India	Gandaki	Validation Terminated	Hydro	Run of river	ACM0002	2007
Félou	Mali	Mauritania Senegal	Kayes	Registered	Hydro	Run of river	ACM0002	188
Nam Lik 1-2	Lao PDR	Thailand	Vientiane	Registered	Hydro	New dam	ACM0002	208
Nam Lik 1	Lao PDR	Thailand	Vientiane	Registered	Hydro	Run of river	ACM0002	122

RE on Integrated Grids & Art 6

Some assumptions

- ITMOs and MO do not have to be in the same metric
- MOs, when they become ITMOs, are tradable further, that is, they are not a bilateral undertaking only
- Only one ITMO characteristic can be used at any time in one jurisdiction towards its NDC
- A Corresponding Adjustment is done to the NDC related number
 - at issuance or <u>first transfer</u> of an ITMO by the Issuing Party (Party where MO is produced and which exports the ITMO for the first time)
 - at the time of ITMOs <u>use towards its NDC</u> by the Using Party (Party which uses the ITMO towards the NDC or towards another purpose recognized under the Paris Agreement).

ERCST

RE on Integrated Grids & Art 6

Roundtable on Climate Change and Sustainable Transition

 Issuing Party (IP) makes a CA at first transfer. The CA remains "open" until the Using Party uses the ITMOs towards its NDC. Further transfers are tracked (buffer/interchange account) but the CA to match that of the Issuing Party will only be made by a Using Party at the time of use towards an NDC.

RE on Integrated Grids & Art 6

India-Bhutan Example

- Bhutan sells RE electricity to India
- Reduction of GHG in India (decrease in CO2 emissions)
- By India- Bhutan agreement they share GHG reduction benefit:
 - India does a CA to its GHG emissions (increase in inventory balance NDC)
 - Bhutan does a CA (decrease in inventory balance, increase in negativity)

RE on Integrated Grids & Art 6

Conclusions

- Mitigation action and mitigation outcome can take in different countries
- Recognition is not different from RE in one country: payment for electricity and for credits
- Benefits of cooperation will be recognized by voluntary international agreement as long as there is a CA and avoidance of double counting
- ITMOs can be in different metrics