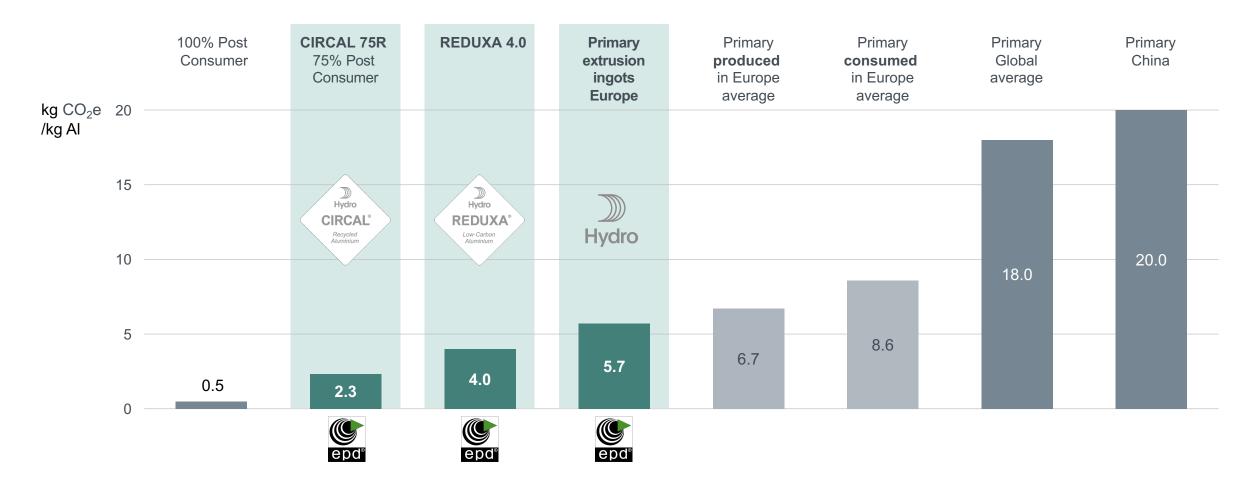

Strategic challenges to the EU ETS in the long-term. Industrial Decarbonisation - The Next Challenge

ERCST Brussels Norsk Hydro Ltd. 2018-11-18 Liv Rathe

Large differences in aluminium carbon footprint globally

- but no carbon costs for the most emission intensive

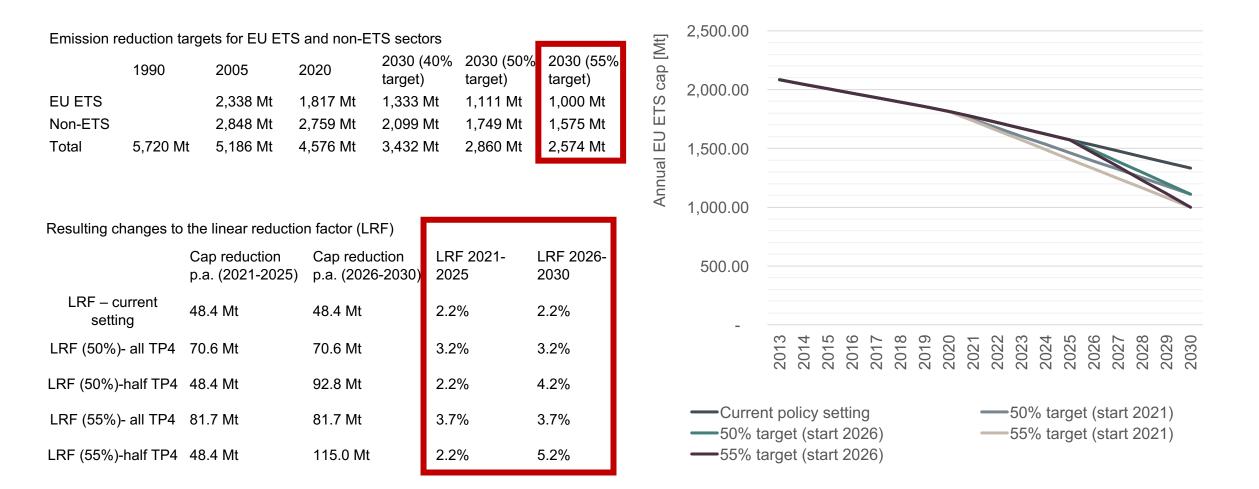
Emissions per tonne aluminium (electrolysis only)


Hydro

Aluminium CO₂ footprint by origin

 \checkmark

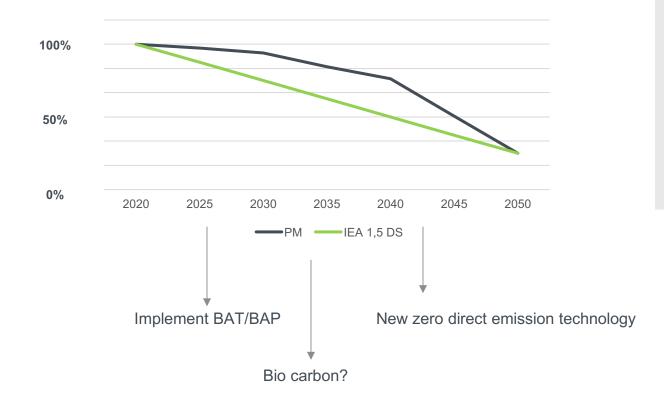
CIRCAL and Reduxa: Hydro products aligned with EU's ambitions



- Incoming **Commission** President pledged climate agenda:
 - Towards a climate neutral continent in 2050
 - 50% to 55% reductions in 2030 EU-wide compared to 1990
 - Leaving share btw ETS and ESR unchanged
 - 52% to 57% reduction for EU ETS cp to 2005

What does the proposed 2030 target change mean?

Industries emissions in ETS 2018: 810 MT.



Our response – smelter view

Probably not one solution, but several initiatives spread out in time

Emission reductions, illustrative

No green transition with red numbers

4

The EU roadmap

A clean planet for all

7 "main building blocks" of the strategy:

- Maximise the benefits from Energy Efficiency including zero emission buildings
- Maximise the deployment of renewables and the use of electricity to fully decarbonise Europe's energy supply
- Embrace clean, safe and connected mobility
- A competitive EU industry and the circular economy as a key enabler to reduce greenhouse gas emissions
- Develop an adequate smart network infrastructure and interconnections
- Reap the full benefits of bio-economy and create essential carbon sinks
- Tackle remaining CO2 emissions with carbon capture and storage

A Clean Planet for all - A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy

Source: European Commission 2018: Communication on

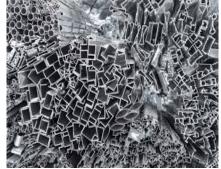
New 2030 target and post-2030 EU ETS regulation context

Industry cannot decarbonize if operational CO₂ cost burden is too high

- Need increased focus on industries' costs
- Possible options to evaluate:
 - LRF reflects technological possibilities?
 - Post 2030 ETS the instrument to decarbonize industries?
 - Carbon Border Adjustments?
 - Low cost credit eligibility?

• Post 2030 - a crystal ball exercise

To get full effect of a CBTA-system: all products taxed according to material content



Tax on primary aluminium

chain is untaxed: imports shift down the value chain

Tax on rolled and extruded products

Tax on components – share of aluminium

Tax on final products – share of aluminium

Iphone 31 g al

Car 200 kg al

If part of the value

MSR reviews

- Today MSR
 - Backward looking instrument for tackling historical surplus
 - An additional CAP correction instrument
- WCI and its auction regulation, both correct surplus and deficit ensuring sustainable and economical viable growth
- EU's MSR don't support beneficial global GHG friendly growth in Europe
- The cancellation option should be reviewed to
 - Avoid naïve imported higher GHG
 - Improve industrial sustainable growth conditions in EU
- And too high outtake rate and too low thresholds create artificial high prices

A challenge to link ETSs Global level playing field for all industries - not realistic in near future

A mistake to solely look at CO₂ price. It's the costs that counts :P1*B*P2*CSCF

Risk variables	Risk variable	EU	International
Prices (P1)	Allowances	Highest	Lower
	Low Cost Credits	No	Vary
	Non-Compliance Fee	High	Low
Benchmark (B)	Levels	Lowest with decrease	Higher no decrease
	Emission inclusion	High	Lower
	MVR standard	Strict	Vary
Production(P2)	Level	Historical	Dynamic
	Production change	Not dynamic	Dynamic
CSCF	Free allowances correction	Uncertain	No

Conclusion The transformation require massive financial support

The EU ETS only a part of the solution

- Ungent to bring low-carbon technologies to the commercial stage
 - But too high EUA prices hinder R&D, piloting and investments as it reduce industries financial strengtl
 - Investment both capital and risk intensive, due to their pioneering nature.
- Process technologies need to be market ready in 2030ties to be deployed across the EU by 2050
- Decarbonize the heavy industry involve
 - Entirely new processes
 - Change of material use and improved efficiency
 - Use of low-carbon energy
 - Carbon Capture Utilization and Storage

• Capital intensive, technically risky and require massive support from the authorities.

We are aluminium

