

ERCST Roundtable EU-ETS: Looking ahead BASF perspective

Susanne Kuschel

Brussels, 27 February 2018

Chemicals – a growth industry Global annual growth rate of ~3.6%*

Energy and climate protection

* Excluding oil and gas production

ETS targets up to 2030

EU Emission Trading 2020 - 2030

- Competitiveness most likely preserved until 2030 (unknowns: MSR + LRF reviews after 2020)
- A change towards CO2-neutral production requires massive investments and can't be re-financed through the ETS

Forthcoming implementation measures

- 2018: Innovation fund eligibility criteria
 - ✓ RES, CCS and CCU projects for chemical industry need to get included
- 2018-2019: Delegated / implementing acts
 - ✓ Chemicals need to be on carbon leakage list: deadline 31-12-2019
 - ✓ Cross-check benchmark update: deadline 30-09-2019
 - Safeguard free allowances allocation rules
 - Accompany Monitoring Reporting Verification regulation
 - ✓ State Aid Guidelines review on indirect emission compensation
 - Secure fair treatment of industrial CHP
- Until 2021:
 - ✓ Prepare for scheduled review dates during ETS phase IV : first MSR review in 2021
- After 2021:
 - LRF review in line with Paris agreement

Carbon leakage rules

Sectors exposed: 100% free allocation of the benchmark

- Less exposed sectors
 - 3. Trading Period: 80% going down to 30 %
 - 4. Trading period: 30 % phased-out after 2026 until 2030
- Current carbon leakage list prolonged until 2020, new list valid for 10 years
- Quantitative assessment: Based on trade intensity multiplied with emission intensity (threshold: 0,2)
- Qualitative assessment possible for sectors between 0,15 and 0,2 and a limited number of carbon leakage sectors (Prodcom)

Carbon leakage rules

Sectors exposed: 100% free allocation of the benchmark

- Less exposed sectors
 - 3. Trading Period: 80% going down to 30 %
 - 4. Trading period: 30 % phased-out after 2026 until 2030
- Current carbon leakage list prolonged until 2020, new list valid for 10 years
- Quantitative assessment: Based on trade intensity multiplied with emission intensity (threshold: 0,2)
- Qualitative assessment possible for sectors between 0,15 and 0,2 and a limited number of carbon leakage sectors (Prodcom)

How Carbon Intensity is calculated (and why qualitative assessment is essential)

Σ kg CO2 (all installations)

Carbon Intensity

Σ EUR GVA (all companies which report under this NACE-Code We create chemistry

Benchmarks in the EU ETS

Source: ETS Handbook

BASF We create chemistry

Benchmark update

- Update of benchmark values for all 54 benchmarks
 - Current benchmarks relate to 2007-2008
 - First benchmark update for 2021-2025 on the basis of 2016-2017 data
 - Second benchmark update for 2026-2030 on the basis of 2021-2022 data

Methodology:

- Based on this data, determination of annual improvement rate for each benchmark (min.: 0,2% p.a.; max.: 1,6% p.a.)
- Phase 3 benchmark values reduced with that annual rate applied over the period 2008-2023 and 2008-2028
- Exception: hot metal benchmark will be reduced by 3% (0,2%) for 2021-2025 period

Product Benchmarks

Source: ETS Handbook

EU Cracker Product Benchmark (2007/08)

- Values include both direct emissions (process and steam) and indirect emissions (electricity)
 - HVC = ethylene + propylene + contained butadiene + contained benzene + hydrogen (non fuel fraction) + acetylene as products

Fall Back Benchmarks

Source: ETS Handbook

BASF We create chemistry

EU ETS system for allocation of free certificates

Product-BM →	Heat-BM $\xrightarrow{\text{no}}$	Fuel-BM \xrightarrow{no}	Historic Emissions
Product output of plant	Measurable heat consumption of plant	Fuel consumption of plant	Emissions
GHG efficiency of process t CO_2 / t product	GHG efficiency of heat generation t CO_2 / TJ	GHG efficiency of fuel t CO ₂ / TJ	
Individual values for 15 GHG intensive processes	62,3 t CO₂ /TJ (natural gas fired boiler with 90% efficiency)	56,1 t CO₂/TJ (emission factor for burning natural gas,	97% of historic emissions
	Product-BMnoProduct output of plantGHG efficiency of process t CO_2 / t productIndividual values for 15 GHG intensive processes	Product-BM $\stackrel{no}{\longrightarrow}$ Heat-BM $\stackrel{no}{\longrightarrow}$ Product output of plantMeasurable heat consumption of plantMeasurable heat consumption of plantGHG efficiency of process t CO2 / t productGHG efficiency of heat generation t CO2 / TJIndividual values for 15 GHG intensive processes62,3 t CO2 / TJ (natural gas fired boiler with 90% efficiency)	Product-BM $\stackrel{no}{\longrightarrow}$ Heat-BM $\stackrel{no}{\longrightarrow}$ Fuel-BM $\stackrel{no}{\longrightarrow}$ Product output of plantMeasurable heat consumption of plantFuel-BM $\stackrel{no}{\longrightarrow}$ GHG efficiency of process t CO2 / t productGHG efficiency of heat generation t CO2 / TJFuel consumption of plantIndividual values for 15 GHG intensive processes62,3 t CO2 / TJ (natural gas fired boiler with 90% efficiency)56,1 t CO2 / TJ (emission factor for burning natural gas,

Product Benchmark is the first priority: 70% of chemical industry emissions stem from processes covered Heat Benchmark, Fuel Benchmark, Historic Emissions are fall-back options

Example: Chemical plants BASF SE Ludwigshafen: Percentage of emission certificates allocated according to respective methodology

62%

Internal

33%

EU ETS system for allocation of free certificates to the chemical industry (2/2)

	Product-BM $\xrightarrow{\text{no}}$	Heat-BM \xrightarrow{no}	Fuel-BM \xrightarrow{no}	Historic Emissions
Strengths	Pushes technical improvement of plants:	Pushes technical improvement of plants:		
	heat generation	heat generation		
	Pushes shift to low- carbon fuel	Pushes shift to low- carbon fuel	Pushes shift to low- carbon fuel	
		Easy set-up	Easy set-up	Very easy set-up
Weaknesses	Complex set-up	Only weak push for technical improvement of plant: production process	Only weak push for technical improvement of plants: production process heat generation	Only weak push for technical improvement of plants: production process heat generation Only weak push for fuel shift
		Early movers are disadvantaged	Early movers are disadvantaged	Early movers are
				We create chemistry

Internal

Data flow of emission reporting

Bureaucratic effort of ETS

Example: BASF SE Ludwigshafen

 Small emitters with GHG emissions
≤ 25000 t CO₂e/a

 Large emitters with GHG emissions
> 25000 t CO₂e/a

D BASE

Internal

Key Learnings on Measuring, Reporting & Verification

- Qualified and well-trained personnel required at
 - operating company
 - authorities
 - external verifiers
- Setup of well-functioning data flow / IT-structure is essential and takes time
- Definition of methods to guarantee accuracy of measurement influences time and cost requirements at operators

To start a system requires much more than a political decision

What is needed in the future?

- Until 2030, the ETS with Carbon Leakage protection measures is the key instrument for climate protection measures
- Options in the Non-ETS-Sector to be fully exploited
- Decarbonization in global production only possible in a global context
- Industry needs support, not addidional burden

?

A fair ETS saveguards production in Europa

- 1. Sufficient free allowances for the whole value chain
 - → Compensate for differences between non-EU- and EU Industry
- 2. Enable investments
 - → Give a perspective for industrial growth in Europe
- 3. Strengthen innovation
 - → Realistic expectations about timescales

Go for global Climate Protection

B20 ⊘ @b20 · 1. Nov. Kurt Bock, CEO of @BASF and B20 Germany Energy, Climate & Resource Efficiency Taskforce Chair calls for action on climate change by the G20.

Original (Englisch) übersetzen

Internal

 \sim

The Chemical Company